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3.5 SINGULAR VALUE DECOMPOSITION (OR SVD)
Eigenvalues and eigenvectors are defined only for square matrices, so it is nat-
ural to ask if extensions to rectangular matrices exist. The key to dealing with
a rectangular Am×n is to revert to the analysis for square matrices by think-
ing in terms of (A∗A)n×n and (AA∗)m×m. Both are hermitian (or real and
symmetric), and hence they are normal. And they have the following properties.

• rank (A∗A) = rank (AA∗) = rank (A) = r (Theorem 2.4.20, page 192).

• A∗A and AA∗ have nonnegative eigenvalues (Exercise 3.1.12, page 297).

• A∗A and AA∗ have the same positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > 0.

— The same holds for zero eigenvalues when m = n.

— If m > n, then AA∗ has m− n more zero eigenvalues than A∗A.

— If m < n, then A∗A has n−m more zero eigenvalues than AA∗.

(See Exercises 3.1.27 and 10.3.17, pages 299 and 824.)

These properties set the stage for the following definition of singular values.

3.5.1. Definition. For A ∈ Fm×n with rank (A) = r, let the positive
eigenvalues of A∗A (and AA∗) be λ1 ≥ λ2 ≥ · · · ≥ λr > 0. The
r nonzero singular values of A are defined to be σi =

√
λi. When

r < p = min{m,n}, A is said to have p− r zero singular values.

The goal is to use the singular values of a rectangular matrix A ∈ Fm×n in
place of the eigenvalues of a square matrix to develop a decomposition similar
(but not identical) to that in (3.4.1) on page 336. To do so, let L be the r × r
diagonal matrix L = diag (λ1, λ2, . . . , λr) containing the positive eigenvalues
of A∗A (or AA∗). Theorem 3.4.2 (page 336) ensures that there are unitary
matrices Vn×n = [ V1︸︷︷︸

n×r

| V2︸︷︷︸
n×(n−r)

] and Xm×m = [ X1︸︷︷︸
m×r

| X2︸︷︷︸
m×(m−r)

] such that

(
L 0
0 0

)
n×n

= V∗A∗AV =

(
V∗1

V∗2

)
A∗A

[
V1 |V2

]
=

(
V∗1A

∗AV1 V∗1A
∗AV2

V∗2A
∗AV1 V∗2A

∗AV2

)

and (3.5.1)

(
L 0
0 0

)
m×m

= X∗AA∗X =

(
X∗1

X∗2

)
AA∗

[
X1 |X2

]
=

(
X∗1AA∗X1 X∗1AA∗X2

X∗2AA∗X1 X∗2AA∗X2

)
.

Looking that the lower right-hand blocks and using the fact that M∗M = 0 if
and only if M = 0 (Exercise 2.4.14, page 194) yields

V∗2A
∗AV2 = 0 =⇒ AV2 = 0, (3.5.2)

X∗2AA∗X2 = 0 =⇒ A∗X2 = 0. (3.5.3)

These observations lead to the following singular value decomposition theorem.
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3.5.2. Theorem. For each A ∈ Fm×n whose positive singular values are
σ1 ≥ σ2 ≥ · · · ≥ σr > 0, there exist unitary matrices Um×m and Vn×n
such that

A = U

(
D 0
0 0

)

m×n
V∗, where D = diag (σ1, σ2, . . . , σr) . (3.5.4)

This is called a singular value decomposition † (or SVD) of A.

Proof. Let Vn×n = [ V1︸︷︷︸
n×r

| V2︸︷︷︸
n×(n−r)

] and Xm×m = [ X1︸︷︷︸
m×r

| X2︸︷︷︸
m×(m−r)

] be unitary

matrices that respectively diagonalize A∗A and AA∗ as in (3.5.1). If

U =
[
AV1D

−1 |X2

]
, (3.5.5)

then U
(
D 0
0 0

)
V∗ =

[
AV1D−1 | X2

](D 0
0 0

)(V∗1

V∗2

)
= AV1V

∗
1 = A. The

last equality here follows from (3.5.2) because

A = AI = AVV∗ = A(V1V
∗
1 + V2V

∗
2) = AV1V

∗
1.

To see that U is unitary, simply verify that U∗U = I by using L = V∗1A
∗AV1

from (3.5.1) along with (3.5.3) and the fact that X2 has orthonormal columns
to write

U∗U =

(
D−1V∗1A

∗AV1D−1 D−1V∗1A
∗X2

X∗2AV1D−1 X∗2X2

)
=

(
D−1LD−1 0

0 I

)
=

(
I 0

0 I

)
.

Note: The simplicity of proof of the SVD belies the importance of its role in both
the theory and applications of linear algebra. While there are several important
matrix decompositions, none finds their way into as many different facets of
applied mathematics and science as does the SVD. This will become evident as
more of the story unfolds with multiple revisitations to the SVD.

Example

Perform a singular value decomposition of A =

(−13/5 −2/15
−14/5 −31/15
−2/5 −58/15

)
by following

the logic in the proof of Theorem 3.5.2. The first step is to diagonalize

ATA =
1

25

(
369 192
192 481

)
and AAT =

1

9

(
61 68 14
68 109 82
14 82 136

)

†
The SVD has been independently discovered and rediscovered several times. Those credited
with the early developments include Eugenio Beltrami (1835–1899) in 1873; M. E. Camille
Jordan (1838–1922) in 1875; James J. Sylvester (1814–1897) in 1889; L. Autonne in 1913; and
C. Eckart and G. Young in 1936.
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with respective orthogonal matrices V and X. Computing eigenvalues reveals
that σ

(
ATA

)
= {λ1 = 25, λ2 = 9}, σ

(
AAT

)
= {λ1 = 25, λ3 = 9, λ3 = 0}, so

r = rank (A) = 2, and the nonzero singular values for A are σ1 =
√
λ1 = 5

and σ2 =
√
λ2 = 3. Thus the matrix D in (3.5.4) is D =

(
5 0
0 3

)
. Compute

eigenvectors of ATA and AAT to be

N
(
ATA− 25I

)
= span

{(
3
4

)}
, N

(
ATA− 9I

)
= span

{(
−4

3

)}
,

N
(
AAT − 25I

)
= span

{(
1
2
2

)}
, N

(
AAT − 9I

)
= span

{(
2
1
−2

)}
,

N
(
AAT − 0I

)
= N

(
AAT

)
= span

{(
2
−2

1

)}
.

Normalizing the eigenvectors produces the orthogonal matrices

V =
1

5

(
3 −4
4 3

)
, X =

1

3

(
1 2 2
2 1 −2
2 −2 1

)
=⇒ V1 = V, X2 =

1

3

(
2
−2

1

)
.

The unitary matrix in (3.5.5) is U =
[
AV1D

−1 |X2

]
= 1

3

(−1 2 2
−2 1 −2
−2 −2 1

)
, so

the resulting SVD is

A = U

(
D

0

)
V∗ =

(−1/3 2/3 2/3
−2/3 1/3 −2/3
−2/3 −2/3 1/3

)(
5 0
0 3
0 0

)(
3/5 −4/5
4/5 3/5

)
.

Note: The computations in this example are meant to illustrate the proof of The-
orem 3.5.2, but this is not the way that singular values are computed in practice.
People’s careers have revolved around creating practical SVD algorithms, and
a significant degree of numerical sophistication is required before being able to
understand and appreciate the nature of some of their methods.

Singular Vectors
In a loose sense the singular values for a rectangular matrix play a role similar
to eigenvalues for a square matrix. So, are there vectors for rectangular matrices
that in some way resemble eigenvectors for square matrices? Well, kind of—if

you are willing to stretch things a bit. If A = U
(
D 0
0 0

)
V∗ is an SVD, and if

vj and uj , 1 ≤ j ≤ r, are respective columns in V and U, then

AV = U
(
D 0
0 0

)
=⇒Avj = σjuj and A∗U = V

(
D 0
0 0

)
=⇒A∗uj = σjvj .

For this reason the following terminology is adopted.
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3.5.3. Definition. The respective columns vj and uj in unitary matrices

V and U from a singular value decomposition A = U
(
D 0
0 0

)
V∗ are

called right-hand singular vectors and left-hand singular vectors
for A because

Avj = σjuj and A∗uj = σjvj for 1 ≤ j ≤ r,
Avj = 0 and A∗uj = 0 for j > r.

(3.5.6)

Notice that the singular vectors are also legitimate eigenvectors—not for A
but rather for A∗A and AA∗ because

A∗A = V
(
D2 0
0 0n−r

)
V∗ and AA∗ = U

(
D2 0
0 0m−r

)
U∗

is equivalent to saying that

A∗Avj = σ2
jvj and AA∗uj = σ2

juj for 1 ≤ j ≤ r,
A∗Avj = 0 and AA∗uj = 0 for j > r.

(3.5.7)

Caution! While the right-hand and left-hand singular vectors for a rectangu-
lar matrix A are respective orthonormal eigenvectors for A∗A and AA∗, the
converse is not true! That is, respective orthonormal eigenvectors for A∗A and
AA∗ are not necessarily singular vectors for A. It is a misconception that
simply finding any set of orthonormal eigenvectors for A∗A and AA∗ is suffi-
cient to construct a U and V that will produce an SVD of A, but life is not
this easy. Taking A = I is a particularly simple example that illustrates this.
The columns of any unitary matrix U will provide orthonormal eigenvectors for
AA∗ = I, and likewise, any other unitary matrix V will contain orthonormal
eigenvectors for A∗A = I. All singular values are 1, so D = I, and the only
way that UDV∗ can be an SVD for I (i.e., UIV∗ = I) is if U = V Thus U
cannot be taken to be just any orthonormal set eigenvectors of AA∗.

However, there is a duality in the following sense. If V is an arbitrary
orthonormal set of eigenvectors for A∗A, then U is fixed by (3.5.5), but if U
is taken as an arbitrary orthonormal set of eigenvectors for AA∗, then V is
fixed by V =

[
A∗U1D

−1 |Y2

]
, where Y = [Y1 |Y2] is a unitary matrix that

diagonalizes A∗A (see Exercise 3.5.9).

Degree of Uniqueness
The nonzero singular values of A ∈ Fm×n are uniquely defined by A because
they are the positive square roots of the nonzero eigenvalues of A∗A (and
AA∗), but what about the singular vectors—to what degree are they uniquely
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defined by A? The preceding discussion in which A = I shows that singular
vectors are not in any way unique because if U is any unitary matrix, then
UIU∗ = I is a legitimate SVD for I. In other words an SVD for a given matrix
need not be unique.

However, something a little more specific can be said in the special case of
singular vectors that correspond to distinct singular values.

3.5.4. Theorem. If v and ṽ are right-hand singular vectors corre-
sponding to the same non-repeated singular value for A ∈ Fm×n, then
ṽ = eiθv for some θ, and similarly for left-hand singular vectors. In
other words, singular vectors corresponding to non-repeated singular
values are unique up to a scalar multiple eiθ.

Proof. If (σ,v) is a right-hand singular-value pair for A, then it follows
from (3.5.6) that (σ2,v) is an eigenpair for A∗A. If σ is not repeated, then
alg multA∗A

(
σ2
)

= 1 = geo multA∗A
(
σ2
)

(Theorem 3.2.9, page 306), so if
(σ, ṽ) is any other right-hand singular-value pair, then ṽ = αv for some α ∈ F.
Since ‖ṽ‖2 = 1, it follows that |α| = 1, and hence ṽ = eiθv for some θ. The
logic is similar for left-hand singular-value pairs.

Extremal Singular Values
If A ∈ Fn×n is hermitian with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, then Theorem
3.4.8 (page 342) characterizes the largest and smallest eigenvalues of A as

λ1 = max
‖x‖2=1

x∗Ax and λn = min
‖x‖2=1

x∗Ax. (3.5.8)

This in turn provides expressions for extremal singular values because singular
values of A are simply square roots of eigenvalues of A∗A. In particular, if σ1
is the largest singular value for A, then the first part of (3.5.8) ensures that

σ2
1 = max‖x‖2=1 x

∗A∗Ax = max‖x‖2=1 ‖Ax‖22 , or equivalently,

σ1 = max
‖x‖2=1

‖Ax‖2 . (3.5.9)

If An×n is nonsingular, then its smallest singular value is σn > 0, so the second
part of (3.5.8) implies that σ2

n = min‖x‖2=1 x
∗A∗Ax = min‖x‖2=1 ‖Ax‖22 , or

equivalently,

σn = min
‖x‖2=1

‖Ax‖2 . (3.5.10)
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Matrix 2-Norm
The characterizations (3.5.9) and (3.5.10) reveal important relationships between
the euclidean vector 2-norm and singular values that unlock the mystery sur-
rounding the nature of the matrix 2-norm that is induced by the standard vector
2-norm. For A ∈ Fm×n and x ∈ Fn×1, Theorem 1.9.5 on page 84 establishes
the fact that every vector norm induces a compatible matrix norm via

‖A‖= max
‖x‖=1

‖Ax‖ and
∥∥A−1

∥∥=
1

min‖x‖=1 ‖Ax‖ when A−1 exists. (3.5.11)

The induced matrix 1-norm and ∞-norm were developed on page 86, but the
formulation of the induced matrix 2-norm had to wait until (3.5.9) and (3.5.10)
could be developed to complete the picture. Respectively combining these ex-
pressions with those in (3.5.11) produces the following theorem.

3.5.5. Theorem. The matrix 2-norm (some called it the spectral norm)
that is induced by the vector euclidean 2-norm is

‖A‖2 = σ1 = max
‖x‖2=1

‖Ax‖2 for A ∈ Fm×n, x ∈ Fn×1 , (3.5.12)

where σ1 is the largest singular value of A. Compatibility with the
euclidean vector norm (i.e., ‖Ax‖2 ≤ ‖A‖2 ‖x‖2) is guaranteed by
Theorem 1.9.5. Moreover, if An×n is nonsingular with singular values
σ1 ≥ σ2 ≥ · · · ≥ σn > 0, then

∥∥A−1
∥∥
2

=
1

σn
=

1

min‖x‖2=1 ‖Ax‖2
. (3.5.13)

The figure below updates the illustration on page 85 to reflect the geometric
interpretation of the matrix 2-norm in R3 in terms of singular values.

max
‖x‖=1

‖Ax‖ = =‖A‖

min
‖x‖=1

‖Ax‖ =
1

‖A -1‖ =

A

σ1
2

2
2

2

2

2

σ3

Figure 3.5.1: Induced Matrix 2-norm in R3.
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Example

Let A =

(−13/5 −2/15
−14/5 −31/15
−2/5 −58/15

)
be the matrix from the example on page 356 where it

was determined there that the largest eigenvalue of ATA is λmax(ATA) = 25.
Consequently,

‖A‖2 = σ1 =
√
λmax(ATA) =

√
25 = 5.

Alternately, λmax(AAT ) = 25 produces the same result.

Properties of the Matrix 2-Norm
Needless to say, computing ‖A‖2 is generally more involved than computing
‖A‖∞ (the largest absolute row sum), or ‖A‖1 (the largest absolute column
sum), or even ‖A‖F (the square root of the sum of squares), but the numerous
theoretical properties of the matrix 2-norm beyond those of a general matrix
norm compensate for the difficulty in computing it.

3.5.6. Theorem. For every A ∈ Fm×n, the following statements hold.

• ‖A‖2 = ‖A∗‖2. (3.5.14)

• ‖A∗A‖2 = ‖A‖22 = ‖AA∗‖2. (3.5.15)

•
∥∥∥
(
A 0
0 B

)∥∥∥
2

= max
{
‖A‖2 , ‖B‖2

}
. (3.5.16)

• ‖Pp×mAQn×q‖2 = ‖A‖2 when P∗P = Im, Q
∗Q = Iq. (3.5.17)

• If B is any submatrix of A, then ‖B‖2 ≤ ‖A‖2 . (3.5.18)

• ‖A‖2 = max
‖x‖2=1

max
‖y‖2=1

|y∗Ax|. (3.5.19)

Proof of (3.5.14). This is true because A∗A and AA∗ have the same nonzero
eigenvalues, so A and A∗ have the same singular values.

Proof of (3.5.15). The largest eigenvalue of (A∗A)∗(A∗A) = (A∗A)2 is the
square of the largest eigenvalue of A∗A (Exercise 3.1.15, page 298), so the
largest singular value of A∗A is the square of the largest singular value of A.

Proof of (3.5.16). Let C =
(
A 0
0 B

)
so that C∗C =

(
A∗A 0
0 B∗B

)
. It follows

from Exercise 3.1.9 on page 297 that σ (C∗C) = σ (A∗A) ∪ σ (B∗B) , and thus

‖C‖22 = λmax(C∗C) = max{λmax(A∗A), λmax(B∗B)} = max{‖A‖22 , ‖B‖
2
2}.

Proof of (3.5.17). If P∗P = Im, then

‖PAQx‖22 = x∗Q∗A∗P∗PAQx = x∗Q∗A∗AQx = y∗A∗Ay,
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where y = Qx. Now, Q∗Q = Iq ensures that ‖x‖2 = 1⇐⇒ ‖y‖2 = 1, so

max
‖x‖2=1

‖PAQx‖22 = max
‖y‖2=1

‖Ay‖22 = ‖A‖22 .

Proof of (3.5.18). Let P and Q be permutation matrices (which are necessarily

unitary) such that PAQ =
(
B ?
? ?

)
. Consequently, ‖A‖2 =

∥∥∥
(
B ?
? ?

)∥∥∥
2
. Use

this along with
∥∥∥
(

I 0
0 0

)∥∥∥
2

= 1 to write

‖B‖2 =
∥∥∥
(
B 0
0 0

)∥∥∥
2

=
∥∥∥
(
Ir 0
0 0

)(
B ?
? ?

)(
Is 0
0 0

)∥∥∥
2

≤
∥∥∥
(
Ir 0
0 0

)∥∥∥
2

∥∥∥
(
B ?
? ?

)∥∥∥
2

∥∥∥
(
Is 0
0 0

)∥∥∥
2

= ‖A‖2 .

Proof of (3.5.19). Applying the Cauchy–Schwarz (CBS) inequality (Theorem
1.4.5, page 27) yields

|y∗Ax| ≤ ‖y‖2 ‖Ax‖2 =⇒ max
‖x‖2=1

‖y‖2=1

|y∗Ax| ≤ max
‖x‖2=1

‖Ax‖2 = ‖A‖2 .

Equality is attained when x and y are respective right-hand and left-hand
singular vectors associated with the largest singular value σ1.

Distance to Lower-Rank Matrices
There are a variety of ways to interpret the meaning of a singular value, but
one of the most important is that of the next theorem that shows σk+1 is the
2-norm distance between Am×n with rank (A) = r and a closest matrix Bm×n
having rank (B) = k < r.

3.5.7. Theorem. Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the nonzero singular
values of A ∈ Fm×n. For each k < r, the 2-norm distance from A to
a closest m× n matrix of rank k is

min
rank(B)=k

‖A−B‖2 = σk+1. (3.5.20)

The distance to a nearest rank-k matrix in the Frobenius norm is

min
rank(B)=k

‖A−B‖F =
[
σ2
k+1 + σ2

k+2 + · · ·+ σ2
r

]1/2
. (3.5.21)

Truncating an SVD A = U
(

Dr 0
0 0

)
V∗ to become B = U

(
Dk 0
0 0

)
V∗

produces a closest matrix rank-k matrix in both norms.
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Proof of (3.5.20). Let A= U
(

Dr 0
0 0

)
V∗ be an SVD, and let rank (Bm×n) = k.

If Um×m = [ U1︸︷︷︸
m×(k+1)

|U2] and Vn×n = [ V1︸︷︷︸
n×(k+1)

|V2], then BV1 is m× (k + 1).

Since rank (BV1) ≤ rank (B) = k, (BV1)x = 0 for some x 6= 0, which can be
assumed to be normalized so that ‖x‖2 = 1. For Dk+1 =diag (σ1, σ2, . . . , σk+1) ,

σk+1 = min
‖z‖2=1

‖Dk+1z‖2 ≤ ‖Dk+1x‖2 ≤ ‖U∗1(A−B)V1x‖2 ≤ ‖A−B‖2 .

Equality in the last expression is attained for B = U
(
Dk 0
0 0

)
V∗.

Proof of (3.5.21). For any rank k matrix B, set C = U∗BV so that

‖A−B‖2F = ‖U∗(A−B)V‖2F =
∥∥∥
(

Dr 0
0 0

)
−C

∥∥∥
2

F

=

r∑

i=1

|σi − cii|2 +
∑

i>r

|cii|2 +
∑

i6=j
|cij |2 ≥

k∑

i=1

|σi − cii|2 +
∑

i>r

|cii|2.
(3.5.22)

Consequently, a rank k matrix B that minimizes ‖A−B‖2F must be such that
cij = 0 for i 6= j. Among rank k matrices C with zero off-diagonal entries, the

one that yields a minimum in (3.5.22) has cii =
{
σi for i ≤ k,
0 for i > r.

Thus the mini-

mum is attained at B = U
(

Dk 0
0 0

)
V∗, and min

rank(B)=k
‖A−B‖2F =

r∑

i=k+1

σ2
i .

Distance to Singularity
A special case of Theorem 3.5.7 reveals how close each nonsingular matrix is to
being singular. It follows from (3.5.20) that minrank(B)=k<n ‖A−B‖2 = σk+1,
and this is smallest when k + 1 = n. Thus the following corollary is produced.

3.5.8. Corollary. If An×n is nonsingular, then the 2-norm distance to a
closest singular matrix is the smallest singular value σn = 1/‖A−1‖2.

Effects of Small Perturbations on Rank
Another important consequence of Theorem 3.5.7 concerns how small pertur-
bations to A ∈ Fm×n can affect its rank. If rank (A) = r < min{m,n},
then intuition might suggest that for relatively small perturbations E, having
rank (A + E) ≥ r is just as plausible as rank (A + E) < r. But not true!
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3.5.9. Theorem. Suppose that A ∈ Fm×n has nonzero singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where r = rank (A). If ‖E‖2 < σr, then
rank (A + E) ≥ rank (A).

• In other words, relatively small perturbations cannot decrease rank.

Proof. Suppose to the contrary that rank (A + E) = k < r. Theorem 3.5.7
then implies that

‖E‖2 = ‖A− (A + E)‖2 ≥ min
rank(B)=k

‖A−B‖2 = σk+1 ≥ σr,

which contradicts ‖E‖2 < σr. Thus rank (A + E) ≥ r = rank (A).

Likelihood of a Drop in Rank
If rank (Am×n) = r < min{m, n}, then Theorem 3.5.9 guarantees that pertur-
bations of even the slightest magnitude can increase the rank. But what is the
likelihood that an increase in rank will actually occur? To answer this question,

let A = U
(
D 0
0 0

)
V∗ be an SVD of A in which D = diag (σ1, σ2, . . . , σr) are

the nonzero singular values, and suppose that ‖E‖2 < σr. Apply U∗ and V
to E to produce

U∗EV =
(
E11 E12

E21 E22

)
, or equivalently, E = U

(
E11 E12

E21 E22

)
V∗,

where E11 is r × r so that A + E = U
(
D + E11 E12

E21 E22

)
V∗. Since ‖E‖2 < σr,

it follows from (3.5.18) on page 361 that ‖E11‖2 < σr, and hence

∥∥D−1E11

∥∥
2
≤
∥∥D−1

∥∥
2
‖E11‖2 < σ−1r σr = 1.

Consequently, I + D−1E11 is nonsingular (by Theorem 2.3.11 on page 168),
which in turn forces D + E11 = D(I + D−1E11) to be nonsingular. It now
follows that

rank (A + E) = rankU
(
D + E11 E12

E21 E22

)
V∗ = rank

(
D + E11 E12

E21 E22

)

= rank (D + E11) + rank (S) = rank (A) + rank (S)

in which S is the Schur complement

S = E22 −E21 (D + E11)
−1

E12. (3.5.23)
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(Recall Exercise 2.4.26 on page 195.) In order for rank (A + E) to not jump,
the perturbation E must be such that S = 0, which is equivalent to saying
E22 = E21 (D + E11)

−1
E12. This clearly requires the existence of a very specific

(and quite special) relationship among the entries of E, and it is extremely
unlikely that a random perturbation will produce such a relationship. This is
the logic behind following hueristic.

• The rank of randomly perturbed matrix will almost surely increase
if it is not already of maximal rank.

(3.5.24)

Consequences for Linear Systems
Theorem 3.5.9 and the realization in (3.5.24) have important implications for
computing solutions of linear systems of equations Ax = b. When floating-
point arithmetic is used (which it almost always is for real-world problems), the
computed solution is the exact solution of a different system whose coefficient
matrix is A + E.

Suppose first that A is nonsingular, and suppose that a stable algorithm
is used to solve Ax = b. Recall from page 236 that being “stable” means that
the algorithm returns the exact solution of a nearby system—i.e., the computed
solution is the exact solution of (A + E)x = b, where the entries in E have
relatively small magnitudes. In particular, if ‖E‖2 < σn (the smallest singular
value), then Theorem 3.5.9 guarantees that A + E will also be nonsingular,
which means that a stable algorithm applied to a nonsingular system will return
a computed solution that is the exact solution to a nearby system that is again
nonsingular .

On the other hand, if A is singular (or rank deficient), then perturbations
of even the slightest magnitude can increase the rank thereby producing a system
with fewer free variables than the original system theoretically demands, so even
a stable algorithm can result in a loss of information or degrees of freedom. Al-
though rounding errors are not truly random, they are random enough to make
it highly unlikely that the Schur complement S in (3.5.23) will be zero. Con-
sequently, if A is rank deficient, then a small perturbation E due to roundoff
will almost certainly cause rank (A + E) > rank (A). The moral is to try to
avoid floating-point solutions of rank-deficient systems. Such problems can often
be distilled down to a nonsingular (or full-rank) core or to full-rank pieces, and
these are the components that should be dealt with.

Singular Values of a Perturbed Matrix
Another useful consequence of Theorem 3.5.7 on page 362 is the following result
that helps to estimate the singular values of a perturbed matrix.
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3.5.10. Theorem. Let A, E ∈ Fm×n, and let p = min{m,n}. If
σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 and β1 ≥ β2 ≥ · · · ≥ βp ≥ 0, are all of the
singular values (nonzero as well as any zero ones) of A and A + E,
respectively, then

|σk − βk| ≤ ‖E‖2 for each k = 1, 2, . . . , p.

In particular, small perturbations to A can only affect small perturba-
tions to its singular values.

Proof. Let A = U
(
Dp 0
0 0

)
V∗ be an SVD, where Dp = diag (σ1, σ2, . . . , σp) .

Note that not all zero blocks are present depending on the value of p. Set

Ak−1 = U
(
Dk−1 0

0 0

)
V∗, where Dk−1 = diag (σ1, σ2, . . . , σk−1) . The largest

singular value of A−Ak−1 is σk so adding and subtracting E and then using
the backward triangle inequality (page 83) produces

σk = ‖A−Ak−1‖2 = ‖A + E−Ak−1 −E‖2
≥ ‖(A + E)−Ak−1‖2 − ‖E‖2
≥ βk − ‖E‖2 (by Theorem 3.5.7).

Couple this with the observation that

σk = min
rank(B)=k−1

‖A−B‖2 = min
rank(B)=k−1

‖A + E−B−E‖2

≤ min
rank(B)=k−1

‖A + E−B‖2 + ‖E‖2 = βk + ‖E‖2

to conclude that |σk − βk| ≤ ‖E‖2.

Numerical Rank
The rank of a matrix is an easy concept to grasp, and in theory its value can
be determined in a variety of ways, one of which is by counting the number of
nonzero singular values. But regardless of whether one counts nonzero singu-
lar values or uses any other method, computing rank (A) using floating-point
arithmetic is problematic (see Exercise 2.8.7 on page 242) because rank (A) is
integer valued. In other words, rank (A) is a discontinuous function of A, so, as
observed in Theorem 3.5.9 and (3.5.24), the slightest perturbation can (and most
likely will) cause the rank to jump if it is not already maximal. This realization
motivates the concept of numerical rank that is based on Theorem 3.5.10.



3.5 Singular Value Decomposition (or SVD) 367

When a stable algorithm is used to numerically compute singular values of
A, it will return the exact singular values βk of a nearby matrix A + E. Con-
siderable effort has gone into the development of stable algorithms for computing
singular values, and good SVD algorithms generally have ‖E‖2 ≈ 5× 10−t‖A‖2
when t-digit floating-point arithmetic is used.

†
If rank (A) = r, then p − r of

the singular values of A are theoretically zero, where p = min{m,n}. Since
Theorem 3.5.10 guarantees that p − r of the computed βk ’s cannot be larger
than ‖E‖2, it is reasonable to make the following definition.

3.5.11. Definition. For A ∈ Fm×n with p = min{m,n} and a given SVD
algorithm that returns the exact singular values β1 ≥ β2 ≥ · · · ≥ βp of
A+E, the numerical (or computed) rank of A is defined to be the
number r̃ such that

β1 ≥ · · · ≥ βr̃ > ‖E‖2 ≥ βr̃+1 ≥ · · · ≥ βp.

This is the value that many commercial software packages return when
rank (A) is called for.

Distortion of the Unit Sphere
Important aspects of a matrix A are revealed by the shape of

A(S2) = {Ax
∣∣ ‖x‖2 = 1},

the image of the unit 2-sphere S2 under transformation by A. The degree to
which A distorts S2 measures the ability of A to lengthen shorter vectors or
to shorten longer ones. The expressions in (3.5.9) and (3.5.10) show that the
largest and smallest singular values, σ1 and σn, of An×n are the respective
lengths of the longest and shortest vectors in A(S2), and the illustration in
Figure 3.5.1 on page 360 suggests that A(S2) is an ellipsoid whose respective
longest and shortest semi-axes have lengths σ1 and σn. It can now be rigorously
established that in general, A(S2) is in fact an ellipsoid in Rn, and moreover,
the intermediate singular values of A provide the lengths of the intermediate
semi-axes of A(S2).

To see this suppose that A ∈ Rn×n is nonsingular (singular and rectangular
matrices are treated in Exercise 3.5.26), and let A = UDVT be an SVD in which
D contains the the singular values σ1 ≥ σ2 ≥ · · · ≥ σn > 0 of A. Rather than
examining the shape of A(S2), first consider the shape of

UT
(
A(S2)

)
=
{
w
∣∣w = UTAx = DVTx for ‖x‖2 = 1

}
.

†
See “Matrix Computations, 4th Edition” by G. H. Golub and C. F. Van Loan, The Johns
Hopkins University Press, Baltimore, 2013.
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Since UT is an isometry (a length preserving transformation), the shape of
A(S2) under transformation by UT is not affected—the effect is only to rotate
A(S2) around the origin in Rn (see page 93). Observing that

w2
1

σ2
1

+
w2

2

σ2
2

+ · · ·+ w2
n

σ2
n

=
∥∥D−1w

∥∥2
2

=
∥∥VTx

∥∥2
2

= ‖x‖22 = 1 (3.5.25)

shows that UT
(
A(S2)

)
is an ellipsoid in Rn whose kth semi-axis is σkek, or

equivalently, A(S2) is the ellipsoid whose kth semi-axis is

U(σkek) = σkuk, where uk is kth left-hand singular vector.

Furthermore, because Avk = σkuk for the right-hand singular vector vk = V∗k,
it follows that vk is a point on S2 that is mapped to the kth semi-axis vector
on A(S2). Figure 3.5.2 below depicts this situation in R3.

A

v3A=u3σ3

v2A=u2σ2

v1A=u1σ1

v1
v2

v3

Figure 3.5.2: Semi-axes as singular vectors

The degree to which A distorts the unit 2-sphere is measured by the ratio of
the largest stretch to the smallest one, and Theorem 3.5.5 (page 360) guarantees
that this “distortion ratio” is given by

κ2 =

max
‖x‖2=1

‖Ax‖2

min
‖x‖2=1

‖Ax‖2
=
σ1
σ3

= ‖A‖2
∥∥A−1

∥∥
2
.

Such an expression was called a condition number for A on pages 170 and
249, but it was without regard to a specific norm. The point here is that with
respect to the 2-norm, there is an explicit and elegant description of the “2-norm
condition number.” These observations are formally summarized below.
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3.5.12. Theorem. (Distortion of the Unit Sphere) Let σ1 ≥ · · · ≥ σn > 0
be the singular values of An×n, and let uk and vk be respective left-
hand and right-hand singular vectors for σk. The image A(S2) of the
unit 2-sphere is an ellipsoid whose kth semi-axis is σkuk, and

• σ1 = ‖Av1‖2 = max
‖x‖2=1

‖Ax‖2 = ‖A‖2, (3.5.26)

• σn = ‖Avn‖2 = min
‖x‖2=1

‖Ax‖2 = 1/‖A−1‖2. (3.5.27)

The degree of distortion of the unit sphere under transformation by A
is measured by the 2-norm condition number that is defined to be

• κ2 = ‖A‖2
∥∥A−1

∥∥
2

=
σ1
σn
≥ 1. (3.5.28)

• κ2 = 1 if and only if A is unitary. (3.5.29)

• Exercise 3.5.17 treats rectangular and rank-degenerate matrices.

Proof. The facts in (3.5.26)–(3.5.28) are from the preceding discussions, and
(3.5.29) follows from the observation that σ1 = σn if and only if D = I in an
SVD A = UDVT so that A = UVT , which is unitary.

Uncertainties, Errors, and Perturbations in Linear Systems
Uncertainties in a linear system Ax = b arise in various ways. For example,
they may emanate from modeling errors (simplifying assumptions are frequently
required); they might be due to data collection errors (infinitely precise mea-
surement devices do not exist); there may be data-entry errors (numbers like√

2, π, and 2/3 cannot be entered exactly); and finally, errors arising from
floating-point computation are a prevalent source of uncertainty. Uncertainties
may reside exclusively in b, or exclusively in A, or they may influence both
A and b. A fundamental issue for practical users of linear algebra is to gauge
the degree to which uncertainties, errors, or perturbations can affect the solution
x. Related problems were treated earlier (pages 170, 174, and 249) with the aid
of calculus to provide intuitive insight, but now a more complete and detailed
picture can be developed to show how all of these issues boil down to analyzing
SVD components.

The simplest case is when only the right-hand side b is affected. This is
also one of the most prevalent situations in practical work because it is often the
case that b contains input data derived from empirical observations whereas A
is known exactly because it is based on underlying physics defining the problem.
And sometimes it is possible to aggregate uncertainties and shift all of them to
the right-hand side. So, start by assuming that Ax = b is a nonsingular system
in which only b is subject to an uncertainty e, and consider Ax̃ = b− e = b̃.
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The relative uncertainty
†

in b is ‖e‖2 / ‖b‖2 = ‖b−b̃‖2/ ‖b‖2 , and the relative
uncertainty in x is ‖x− x̃‖2 / ‖x‖2 . The following theorem shows how the
relative uncertainty in x is bounded by the relative uncertainty in b.

Notation: Normally e designates a vector of all ones, but throughout the re-
mainder of this section the notation is changed to allow e to denote a vector
whose components represent uncertainties or errors.

3.5.13. Theorem. If a nonsingular system Ax = b is perturbed to
become Ax̃ = b − e = b̃, then the relative change in the solution is
bounded above and below as follows.

κ−12

‖e‖2
‖b‖2

≤ ‖x− x̃‖2
‖x‖2

≤ κ2
‖e‖2
‖b‖2

, (3.5.30)

where κ2 = σ1/σn = ‖A‖2
∥∥A−1

∥∥
2

is the condition number in (3.5.28).

Proof. Start with ‖b‖2 = ‖Ax‖2 ≤ ‖A‖2 ‖x‖2 and x− x̃ = A−1e to write

‖x− x̃‖
‖x‖ =

∥∥A−1e
∥∥
2

‖x‖2
≤
‖A‖2

∥∥A−1
∥∥
2
‖e‖2

‖b‖2
= κ2

‖e‖2
‖b‖2

.

Now combine ‖x‖2≤
∥∥A−1

∥∥
2
‖b‖2 and ‖e‖2 = ‖A(x− x̃)‖2 ≤ ‖A‖2 ‖(x− x̃)‖2

to produce

‖x− x̃‖2
‖x‖2

≥ ‖e‖2
‖A‖2 ‖x‖2

≥ ‖e‖2
‖A‖2 ‖A−1‖2 ‖b‖2

=
1

κ2

‖e‖2
‖b‖2

.

Equality is Possible
A matrix A is considered to be well conditioned when κ2 is small

‡
relative to 1

because in such a case Theorem 3.5.13 means that small relative uncertainties in
b cannot greatly affect the solution, but as A becomes more ill conditioned (i.e.,
as κ2 becomes larger), small relative uncertainties in b might produce larger
relative uncertainties in x. To clarify this, it must be determined if equality in
(3.5.30) can be realized for every nonsingular A. The next theorem shows that
equality in each side of (3.5.30) is indeed possible, and the relationship between
b and its uncertainties e that will produce equality can be made explicit.

†
Knowing or estimating absolute uncertainties such as ‖e‖2 and ‖x− x̃‖2 are generally not
meaningful or helpful. For example, an absolute uncertainty of a half of an inch might be
excellent when measuring the distance between the earth and the nearest star, but it is not
good in the practice of eye surgery.

‡
See the rule of thumb on page 250 to get a feeling of what “small” and “large” might mean in
the context of numerical analysis.
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3.5.14. Theorem. Let Ax = b, where σ1 ≥ σ2 ≥ · · ·σn > 0 are the
singular values of An×n, and let vk and uk be respective right-hand
and left-hand singular vectors associated with σk. If b is perturbed
by e to produce Ax̃ = b − e = b̃, and if b and e are respectively
directed along u1 and un, then

‖x− x̃‖2
‖x‖2

= κ2
‖e‖2
‖b‖2

(equality in the right-hand side of (3.5.30)).

However if b and e are respectively directed along un and u1, then

κ−12

‖e‖2
‖b‖2

=
‖x− x̃‖2
‖x‖2

(equality in the left-hand side of (3.5.30)).

Proof. Suppose first that b = βu1 and e = εun for scalars β and ε. Since
Avk = σkuk implies that vk/σk = A−1uk for each k, it follows that

x = A−1b = A−1(βu1) =
βv1

σ1
and x− x̃ = A−1e = A−1(εun) =

εvn
σn

,

and thus
‖x− x̃‖2
‖x‖2

=

(
σ1
σn

) |ε|
|β| = κ2

‖e‖2
‖b‖2

.

On the other hand, if b = βun and e = εu1, then the same argument yields
x = βvn/σn and x− x̃ = εv1/σ1, so

‖x− x̃‖2
‖x‖2

=

(
σn
σ1

) |ε|
|β| = κ−12

‖e‖2
‖b‖2

.

In other words, Theorem 3.5.14 guarantees that the worst case as well as
the best case scenarios can each be realized for every nonsingular A, so while a
small κ2 ensures that relatively small changes in b cannot produce relatively
large changes in x, it is a certainty that a large κ2 will perpetuate a huge effect
when b and e lie in unfortunate directions. But on the other hand, it is also
a certainty that if b and e lie in more fortunate directions, then changes in b
will have almost no effect on x —in fact, a large κ2 can actually mitigate the
effects of e resulting in a minimal change in x. Nevertheless, in light of the fact
that the direction of e can rarely be known, the worst case must be guarded
against, and increasing caution is required as κ2 increases.

In hind sight, the results in Theorems 3.5.13 and 3.5.14 could have been
anticipated from the geometry illustrated in Figure 3.5.2 on page 368 because
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A−1 maps the ellipsoid defined by the singular vectors back to the unit sphere.
This means that when a vector y is in (or near) the span of u1, its length
is reduced by A−1 relative to that when y is in (or near) the span of un.
More precisely, if y1 = αu1 and yn = αun, then ‖y1‖2 = |α| = ‖yn‖2 , but
A−1y1 = ασ−11 v1 and A−1yn = ασ−1n vn, so

∥∥A−1y1

∥∥
2

‖A−1yn‖2
= κ−12 ≤ 1 =⇒

∥∥A−1y1

∥∥
2

= κ−12

∥∥A−1yn
∥∥
2
≤
∥∥A−1yn

∥∥
2
.

Continuity dictates that the same holds when y1 and yn are sufficiently close
to the relative spans of u1 and un.

Uncertainty in Both Sides
Suppose that there are uncertainties in both sides of a nonsingular system
Ax = b, and consider (A − E)x̃ = b − e. The aim now is to establish an
upper bound on ‖x− x̃‖2 / ‖x‖2 (the relative change in x) in terms of both
‖E‖2 / ‖A‖2 (the relative change in A) and ‖e‖2 / ‖b‖2 (the relative change
in b) along with the condition number κ2 = σ1/σn. Theorem 2.9.1 on page
250 does this in a continuous sense by using calculus to show that if A = A(t)
and b = b(t) are differentiable functions of a variable t in an interval [a, b] on
which A(t) is nonsingular, and if x = x(t) is the solution to A(t)x(t) = b(t),
then the relative size of the derivative x′ = x′(t) is

‖x′‖
‖x‖ ≤ κ2

(‖b′‖
‖b‖ +

‖A′‖
‖A‖

)
.

While this is mathematically elegant, it lack specificity about the acceptable
size of uncertainties that might be tolerable. The discrete bound below is not as
pretty as the derivative bound, but it more clearly illuminate things.

3.5.15. Theorem. Let A ∈ Fn×n be nonsingular with singular values
σ1 ≥ σ2 ≥ · · ·σn > 0, and consider Ax = b and (A−E)x̃ = b− e. If
‖E‖2 < σn, then A−E is also nonsingular, and

‖x− x̃‖2
‖x‖2

≤ κ2
1− κ2 ‖E‖2 / ‖A‖2

( ‖e‖2
‖b‖2

+
‖E‖2
‖A‖2

)
,

where κ2 = σ1/σn = ‖A‖2
∥∥A−1

∥∥
2
.
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Proof. The fact that A−E is nonsingular when ‖E‖2 < σn is a consequence
of Theorem 3.5.9 on page 364. For convenience, let B = A−1E, and observe
that ‖B‖2 ≤

∥∥A−1
∥∥
2
‖E‖2 < σn/σn = 1 so that (I − B)−1 =

∑∞
k=0 B

k (by
Theorem 2.3.11 on page 168). Starting with

x− x̃ = x− (I−B)−1A−1(b− e) =
(
I− (I−B)−1

)
x + (I−B)−1A−1e,

take norms and apply the inequalities

b = Ax =⇒ 1/ ‖x‖2 ≤
‖A‖2
‖b‖2

=⇒
∥∥A−1e

∥∥
2

‖x‖2
≤
‖A‖2

∥∥A−1
∥∥
2
‖e‖2

‖b‖2
= κ2

‖e‖2
‖b‖2

to write

‖x− x̃‖2
‖x‖2

≤
∥∥I− (I−B)−1

∥∥
2

+
∥∥(I−B)−1

∥∥
2
κ2
‖e‖2
‖b‖2

. (3.5.31)

The identity I− (I−B)−1 = −B(I−B)−1 derived from I = (I−B)(I−B)−1

together with the triangle inequality yields

∥∥(I−B)−1
∥∥
2
≤
∞∑

k=0

‖B‖k2 =
1

1− ‖B‖2
and

∥∥I− (I−B)−1
∥∥
2
≤ ‖B‖2

1− ‖B‖2
.

Use these in (3.5.31) together with ‖B‖2 ≤
∥∥A−1

∥∥
2
‖E‖2 = κ2 ‖E‖2 / ‖A‖2 to

conclude that

‖x− x̃‖2
‖x‖2

≤ κ2
1− κ2 ‖E‖2 / ‖A‖2

( ‖e‖2
‖b‖2

+
‖E‖2
‖A‖2

)
.

Note: Theorems 3.5.13 and 3.5.15 remain valid for any matrix norm for which
‖I‖ = 1 and where κ is defined to be κ = ‖A‖

∥∥A−1
∥∥ (Exercise 3.5.23).

Checking an Answer
Suppose that x̃ is a computed (or approximate) solution for a nonsingular sys-
tem Ax = b, and suppose that the accuracy of x̃ is “checked” by computing
the residual r = b−Ax̃. If every component of r is exactly zero, then x̃ must
be the exact solution. However, if r 6= 0 but ‖r‖2 is zero to t significant digits,
can we be confident that x̃ be accurate to roughly t significant figures? No! As
illustrated in Bob’s dance with the Devil on page 246, the signs may not even be
correct. Theorems 3.5.13 and 3.5.14 remove the mystery behind using residuals
to check an answer.

Rewrite r = b −Ax̃ as Ax̃ = b − r, and apply Theorem 3.5.13 on page
370 with the error term e replaced by r to conclude that

κ−12

‖r‖2
‖b‖2

≤ ‖x− x̃‖2
‖x‖2

≤ κ2
‖r‖2
‖b‖2

. (3.5.32)
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In other words, this says that for relatively small values of κ2, a computed (or
approximate) solution x̃ is relatively accurate if and only if ‖r‖2 is relatively
small. However, Theorem 3.5.14 on page 371 says that equality on the right-
hand side of (3.5.32) is possible, so when this occurs and κ2 is large enough
to overwhelm the size a small ‖r‖2 , the computed (or approximate) solution
x̃ will necessarily be inaccurate. Thus the bottom line concerning “checking an
answer” is as follows.

Residuals are reliable indicators of accuracy only when A is reason-
ably well conditioned. As A becomes more ill conditioned, the residuals
become increasingly unreliable indicators of accuracy.

Exercises for section 3.5

3.5.1. Evaluate the matrix 2-norm for each matrix below.

A =
(

1 −2
−1 2

)
, B =

(
0 1 0
0 0 1
1 0 0

)
, C =

(
4 −2 4
−2 1 −2
4 −2 4

)
.

3.5.2. Determine ‖A‖2 as well as ‖A−1‖2 for A =
1
√

3

(
3 −1

0
√

8

)
.

3.5.3. Determine a singular value decompositions for each of the following ma-
trices.

(a) A =
(
−4 −6

3 −8

)
(b) B =

(
1
0
−1

)

3.5.4. Explain why both of the following factorizations represent singular value
decompositions of the same matrix.
(

1/
√

2 1/
√

3 1/
√

6

0 1/
√

3 −2/
√

6

−1/
√

2 1/
√

3 1/
√

6

)(√
2

0
0

)
(1) =

(
1/
√

2 0
√

2
0 1 0

−1/
√

2 0
√

2

)(√
2

0
0

)
(1)

3.5.5. If A is a normal matrix, how are its eigenvalues related to its singular
values? How is this different from the case in which A is hermitian?

3.5.6. If λ is an eigenvalue for A ∈ Fn×n, then 1 + λ is an eigenvalue for
I + A (by Exercise 3.1.15 on page 298). Is the same true for singular
values? That is, if σ is a singular value for A, must 1+σ be a singular
value for I + A?
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3.5.7. Proving that rank ( A∗AA∗ ) = rank (A) was Exercise 2.4.21 on page
195. Use an SVD to establish the same result.

3.5.8. Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0 be the nonzero singular values of

A ∈ Fm×n. Explain why the distinct eigenvalues of B =
(

0 A
A∗ 0

)

are σ (B) = {±σ1,±σ2, . . .± σr, 0}.

3.5.9. For A ∈ Fm×n with rank (A) = r, let Um×m = [ U1︸︷︷︸
m×r

| U2︸︷︷︸
m×(m−r)

]

be a unitary matrix whose columns are a complete orthonormal set
of eigenvectors for AA∗, and let Yn×n = [ Y1︸︷︷︸

n×r

| Y2︸︷︷︸
n×(n−r)

] be a uni-

tary matrix that diagonalizes A∗A. If V =
[
A∗U1D

−1 |Y2

]
, where

D = diag (σ1, σ2, . . . , σr) contains the singular values of A, show that

A = U

(
D 0
0 0

)
V∗ is a singular value decomposition of A.

3.5.10. For a convergent sequence {Ak}∞k=1 of matrices, let A = limk→∞Ak.

(a) Prove that if each Ak is singular, then A is singular.

(b) If each Ak is nonsingular, must A be nonsingular? Why?

3.5.11. Let u,v ∈ Fm×1 be nonzero. Prove that the nonzero singular value of
the rank-one matrix A = uv∗ is σ = ‖u‖2 ‖v‖2 . Note: This means
that ‖A‖2 = ‖uv∗‖2 = ‖u‖2 ‖v‖2 .

3.5.12. Explain why every A ∈ Fm×n with rank (A) = r can be expanded as

A =

r∑

i=1

σiuiv
∗
i ,

where the σi ’s are the nonzero singular values of A, and the ui ’s and
vi ’s are the respective left-hand and right-hand singular vectors.

3.5.13. Give an example to show that there need not be a unique closest matrix
of rank k to a given matrix A. In other words, if σ1 ≥ σ2 ≥ · · · ≥ σr
are the nonzero singular values of A, then for k < r there can be two
matrices B1 6= B2 such that ‖A−B1‖2 = ‖A−B1‖2 = σk+1.
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3.5.14. SVD and the Pseudo Inverse. Let A = U
(
D 0
0 0

)
V∗ be an SVD for

A ∈ Fm×n, where rank (A) = r and D = diag (σ1, σ2, . . . , σr) .
(a) Explain why the pseudo inverse of A ∈ Fm×n is

A† = V
(
D−1 0
0 0

)
U∗ =

r∑

i=1

σ−1i viu
∗
i .

Hint: Recall Exercise 2.4.43, page 197.
(b) Use this SVD formulation to verify that A† satisfies the four

Penrose equations given in (2.4.16) on page 190—i.e., show that

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

3.5.15. Pseudo Inverses Lack Continuity. Theorem 2.3.12 on page 169 guarantees
that the inverse of a nonsingular matrix varies continuously with the
entries in A. Show that the same is not true for the pseudo inverse by

considering A(x) =
(

1 0
0 x

)
.

3.5.16. Let σr be the smallest nonzero singular value of Am×n. Prove that if
|ε| < σ2

r , then (ATA+εI)−1 exists, and limε→0(ATA+εI)−1AT = A†.

3.5.17. Prove that if rank (Am×n) = r and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the
nonzero singular values, then (3.5.27) on page 369 generalizes to say

σr = min
‖x‖2=1

x⊥N(A)

‖Ax‖2 = 1/
∥∥A†

∥∥
2
.

3.5.18. Generalized Condition Number. Let rank (Am×n) = r with nonzero
singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Extend the bounds in Theo-
rem 3.5.13 on page 370 to include singular and rectangular matrices by
showing that if x and x̃ are the respective minimum 2-norm solutions
of consistent systems Ax = b and Ax̃ = b̃ = b − e (recall Exercise
2.4.35 on page 196), then

κ−12

‖e‖2
‖b‖2

≤ ‖x− x̃‖2
‖x‖2

≤ κ2
‖e‖2
‖b‖2

, where κ2 =
σ1
σr

= ‖A‖2
∥∥A†

∥∥
2
.

Does the same reasoning in the proof of Theorem 3.5.14 on page 371
prove that these upper and lower bounds are attainable for every A?
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3.5.19. Let A ∈ Fm×n have rank (A) = r. Prove that if A = U
(
D 0
0 0

)
V∗

is an SVD in which D = diag (σ1, σ2, . . . , σr) , then the solution of
minimum norm for a consistent linear system Ax = b is

x =

r∑

i=1

〈ui b〉
σi

vi = A†b.

Hint: Recall Exercise 2.4.35 on page 196.

3.5.20. Normal Equations and SVD. For A ∈ Fm×n with rank (A) = r and
for b ∈ Fm×1, the linear system A∗Ax = A∗b is called the system of
normal equations, and such a system is always consistent—see Exercise

2.4.34 on page 196. Prove that if A = U
(
D 0
0 0

)
V∗ is an SVD in which

D = diag (σ1, σ2, . . . , σr) , then a solution of the normal equations is

x =

r∑

i=1

〈ui b〉
σi

vi = A†b.

3.5.21. Show that if κ is the two-norm condition number for A ∈ Fm×n, then
the two-norm condition number for A∗A is κ2.

Note: In particular, this means that if A is ill conditioned, then the
system of normal equations A∗A = A∗b is even more so, and hence
solving the normal equations may pose numerical difficulties when using
float-point arithmetic.

3.5.22. Norms and Singular Values. Let A ∈ Fm×n with rank (A) = r.

(a) Show that ‖A‖F =
(∑r

i=1 σ
2
i

)1/2
, where σ1 ≥ σ2 ≥ · · · ≥ σr > 0

are the nonzero singular values of A.
(b) Conclude that

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 ,

and note that this explains the (2, F ) and the (F, 2) entry in
the matrix




1 2 ∞ F

1 ∗ √
n n

√
n

2
√
n ∗ √

n 1
∞ n

√
n ∗ √

n
F

√
n
√
n
√
n ∗


. (3.5.33)
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from (1.9.10) on page 87 that provides the multipliers αij for
the relations ‖A‖i ≤ αij ‖A‖j .

(c) Now derive the remaining entries αij in (3.5.33) for A ∈ Fn×n.
Hint: Recall the relations between the common vector norms
from Exercise 1.5.4 on page 37, and revisit the proof of Theorem
1.9.6 on page 86.

Note: Other families of matrix norms are defined in terms of the singular
values. For example, using just the first k singular values produces

the Hilbert–Schmidt norms ‖A‖ =
(∑k

i=1 σ
2
i

)1/2
. The matrix 2-norm

‖A‖2 = σ1 is the most important special case. Another variation called

the Schatten p-norms are defined by taking ‖A‖ = (
∑r
i=1 σ

p
i )

1/p
for

integers p > 0.

3.5.23. Verify that the results in Theorem 3.5.13 on page 370 and Theorem
3.5.15 on page 372 hold for any matrix norm for which ‖I‖? = 1, where
κ2 is replaced by κ? = ‖A‖?

∥∥A−1
∥∥
?
.

3.5.24. Ky Fan’s Extension. Let σ1 ≥ σ2 ≥ · · · ≥ σs be the singular values of
A ∈ Fm×n, where s = min{m,n}. Use Ky Fan’s Theorem on page 344
to prove that for matrices X ∈ Fn×k such that XTX = Ik with k ≤ s,

k∑

j=1

σ2
j = max

XTX=Ik
‖AX‖F and

n∑

j=n−k+1

σ2
j = min

XTX=Ik
‖AX‖F .

3.5.25. Pivots and Conditioning. An ill-conditioned matrix might be suspected
when a small pivot uii emerges during the LU factorization of A be-
cause

[
U−1

]
ii

= 1/uii is then large, and this opens the possibility of

A−1 = U−1L−1 having large entries. Unfortunately, this is not an ab-
solute test, and no guarantees about conditioning can be made from the
pivots alone.

(a) Construct an example of a matrix that is well conditioned but
has a small pivot.

(b) Construct an example of a matrix that is ill conditioned but has
no small pivots.

3.5.26. Extend the discussion on page 367 concerning the distortion of the unit
2-sphere S2 ⊂ Rn to include singular and rectangular matrices by show-
ing that if rank (Am×n) = r and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the
nonzero singular values of A, then the image A(S2) ⊂ Rm is an ellip-
soid (possibly degenerate) in which the kth semi-axis is σkuk = Avk,
where uk and vk are respective left-hand and right-hand singular vec-
tors for A.
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Solutions for exercises in section 3. 5

3.5.1. ‖A‖2 =
√
λmax(ATA), where λmax is the largest eigenvalue of ATA. Com-

puting these eigenvalues in each case yields ‖A‖2 =
√

10, ‖B‖2 = 1, and
‖C‖2 = 9.

3.5.2. The characteristic equation of ATA is λ2 − 6λ + 8 = (λ − 4)(λ − 2), so the
singular values of A are σ1 = 2 and σ2 =

√
2, and hence ‖A‖2 = σ1 = 2 and

‖A−1‖2 = 1/
√

2.

3.5.3. (a) σ1 = 10, σ2 = 5, and A = UDVT =
(
−6/10 −4/5
−8/10 3/5

)(
10 0
0 5

)(
0 1
1 0

)
.

(b) σ1 =
√

2, and B = UDVT =

(
1/
√

2 0
√

2
0 1 0

−1/
√

2 0
√

2

)(√
2

0
0

)
[1].

3.5.4. They are both of the form U
(
D
0

)
VT where U3×3 and V1×1 are orthogonal

matrices. Both represent singular value decompositions for A =

(
1
0
−1

)
. This

shows that singular vectors are not uniquely defined.
3.5.5. If A is a normal, then it is unitarily similar to a diagonal matrix—say that

A = UDU∗, where D = diag (λ1, λ2, . . . , λn) contains the eigenvalues of A.
Since A∗A = UDDU∗, where DD is a diagonal matrix whose diagonal entries
are all of the form |λi|2, these numbers must be the eigenvalues of A∗A, and
thus the singular values of A are the numbers σi = |λi|. The situation is
exactly the same for hermitian matrices. When A is hermitian, A∗A = A2, so
the eigenvalues of A∗A are λ2i , where λi is an eigenvalue for A, and thus the

singular values are of the form σi =
√
λ2i = |λi|.

3.5.6. No—almost any 2× 2 matrix can serve as a counterexample. For example, if

A =
(

0 1
0 0

)
, then its singular values are {1, 0}, but the singular values of

I + A are [(3±
√

5)/2]1/2.

3.5.7. Suppose that rank (A) = r, and let A = U
(
D 0
0 0

)
V∗ be an SVD in which

Dr×r is a nonsingular diagonal matrix. Write

A∗AA∗ = V
(
D∗ 0
0 0

)
U∗U

(
D 0
0 0

)
V∗V

(
D∗ 0
0 0

)
U∗ = V

(
D∗DD∗ 0

0 0

)
U∗,

and use the fact that rank (D∗DD∗) = rank (D) = r (because D is nonsingu-
lar) to conclude that that rank ( A∗AA∗ ) = rank (A).

3.5.8. B is hermitian, so it has real eigenvalues, and B2 = B∗B has real and nonneg-
ative eigenvalues. Hence λ ∈ σ

(
B2
)
⇐⇒ ±

√
λ ∈ σ (B) . Consequently

B2 = B∗B =
(
AA∗ 0
0 A∗A

)

=⇒ σ
(
B2
)

= σ (AA∗) ∪ σ (A∗A) = {σ2
1 , σ

2
2 , . . . σ

2
r , 0}

=⇒ σ (B) = {±σ1,±σ2, . . .± σr, 0}.
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3.5.9. The logic is identical to that in the proof of Theorem 3.5.2. Write

U

(
D 0
0 0

)
V∗ = [U1D |0]

(
D−1U∗1A

Y∗2

)
= U1U

∗
1A = A.

The last equality here follows from (3.5.1) and (3.5.3) with X2 replaced by U2

because A∗U2 = 0 =⇒ U∗2A = 0 so that

A = IA = UU∗A = (U1U
∗
1 + U2U

∗
2)A = U1U

∗
1A.

To see that V is unitary, simply verify that V∗V = I by using L = U∗1AA∗U1

from (3.5.1) (with X replaced by U) along with (3.5.2) (with V replaced by
Y) and the fact that Y2 has orthonormal columns to write

V∗V =

(
D−1U∗1AA∗U1D−1 D−1U∗1AY2

Y∗2A
∗U1D−1 Y∗2Y2

)
=

(
D−1LD−1 0

0 I

)
=

(
I 0

0 I

)
.

3.5.10. (a) Suppose An×n is nonsingular, and let Ek = Ak−A so that lim
k→∞

Ek = 0.

This together with Theorem 3.5.9 on page 364 implies there exists a sufficiently
large value of k such that

rank (Ak) = rank (A + Ek) ≥ rank (A) = n,

which is impossible because each Ak is singular. Therefore, the supposition that
A is nonsingular must be false.
(b) No—consider the sequence of 1× 1 matrices [1/k]→ [0].

3.5.11. Since rank (A) = 1, there is exactly one nonzero singular value σ, and λ = σ2

is the nonzero eigenvalue of A∗A. Since

A∗Av = (uv∗)∗(uv∗)v = (vu∗uv∗)v = ‖u‖22 ‖v‖
2
2 v,

it follows that λ = ‖u‖22 ‖v‖
2
2 , so σ =

√
λ = ‖u‖2 ‖v‖2 , is the only nonzero

singular value of A, and thus ‖A‖2 = σ = ‖u‖2 ‖v‖2 .
3.5.12. Simply expand an SVD by writing

A = U

(
D 0
0 0

)
V∗ = [u1 · · ·ur · · ·um]




σ1
. . .

σr
0

. . .
0







v∗1
...
v∗r
...
v∗n




= σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σrurv

∗
r .
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3.5.13. If A =

(
3

2
1

)
, B1 =

(
3

0
0

)
, and B2 =

(
1

0
0

)
, then

‖A−B1‖2 = 2 = ‖A−B1‖2.

In other words, B1 and B2 are both rank-one matrices that are a minimal
distance from A.

3.5.14. (a) Use the result in Exercise 2.4.43 on page 197 that says (UXV)
†

= V∗X†U∗

for unitary U and V together with the result of Exercise 2.4.37 on page 196

to conclude that if A = U
(
D 0
0 0

)
V∗ is an SVD of A, then

A† =
(
U
(
D 0
0 0

)
V∗
)†

= V
(
D 0
0 0

)†
U∗ = V

(
D−1 0
0 0

)
U∗ =

r∑

i=1

σ−1i viu
∗
i .

(b) Straightforward multiplication does the job.

3.5.15. If A(x) =
(

1 0
0 x

)
, then A†(x) =





(
1 0
0 1/x

)
for x 6= 0,

(
1 0
0 0

)
for x = 0.

This shows that

not only is A†(x) discontinuous because limx→0 A
†(x) 6= A†(0), but it is dis-

continuous in the worst way because as A(x) comes closer to A(0) the matrix
A†(x) moves farther away from A†(0). This type of behavior translates into
insurmountable computational difficulties because small errors due to roundoff
(or anything else) can produce enormous errors in the computed A†, and as
errors in A become smaller the resulting errors in A† can become greater. The
inherent numerical problems coupled with the fact that it is rare for an appli-
cation to require explicit knowledge of the entries of A† constrains the pseudo
inverse to being a strictly theoretical or notational tool. But don’t underestimate
this role—go back and read Laplace’s statement quoted on page 2.

3.5.16. If A = U
(
D 0
0 0

)
VT is an SVD, then ATA + εI = U

(
D2 + εI 0

0 εI

)
VT is an

SVD with no zero singular values, so it is nonsingular. Furthermore,

(ATA + εI)−1AT = U
(

(D2 + εI)−1D 0
0 0

)
VT → U

(
D−1 0
0 0

)
VT = A†.

3.5.17. If A = U
(
D 0
0 0

)
V∗, where Um×m = [ U1︸︷︷︸

m×r

| U2︸︷︷︸
m×(m−r)

], Vn×n = [ V1︸︷︷︸
n×r

| V2︸︷︷︸
n×(n−r)

],

and D = diag (σ1, σ2, . . . , σr) , then A[V1 |V2] = [U1D |0] ⇒ AV2 = 0. If
‖x‖2 = 1 and x ⊥ N (A), then, in particular, V∗2x = 0. Furthermore,

‖Ax‖2 = ‖U1DV∗1x‖2 = ‖DV∗1x‖2 = ‖Dy‖2 , where y = V∗1x.

Since I = V1V
∗
1 + V2V

∗
2, it follows that

1 = ‖x‖2 = ‖Ix‖2 = ‖V1V
∗
1x‖2 = ‖V1y‖2 = ‖y‖2 (by (3.5.17) on page 361).
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Consequently,

min
‖x‖2=1

x⊥N(A)

‖Ax‖2 = min
‖y‖2=1

‖Dy‖2 = σr (by (3.5.10) on page 359).

To prove σr = 1/
∥∥A†

∥∥
2
, use A†n×m = V

(
D−1 0
0 0

)
U∗ (from Exercise 3.5.14)

together with (3.5.12) on page 360 to write
∥∥A†

∥∥
2

= maxσi 6=0{1/σi} = 1/σr.

3.5.18. x = A†b and x̃ = A†(b− e) are the respective solutions of minimal 2-norm of
Ax = b and Ax̃ = b̃ = b−e by Exercise 2.4.35 on page 196. The development
of the more general bounds is essentially the same as in the proof of Theorem
3.5.13.

‖x− x̃‖2 = ‖A†(b− b̃)‖2 ≤ ‖A†‖2 ‖b− b̃‖2,
b = Ax =⇒ ‖b‖2 ≤ ‖A‖2 ‖x‖2 =⇒ 1/‖x‖2 ≤ ‖A‖2/‖b‖2,

so
‖x− x̃‖2
‖x‖2

≤
(
‖A†‖2 ‖b− b̃‖2

) ‖A‖2
‖b‖2

= κ2
‖e‖2
‖b‖2

.

Similarly,

‖b− b̃‖2 = ‖A(x− x̃)‖2 ≤ ‖A‖2 ‖x− x̃‖2,
x = A†b =⇒ ‖x‖2 ≤ ‖A†‖2 ‖b‖2 =⇒ 1/‖b‖2 ≤ ‖A†‖2/‖x‖2,

so

‖b− b̃‖2
‖b‖2

≤ (‖A‖2 ‖x− x̃‖2)
‖A†‖2
‖x‖2

= κ2
‖x− x̃‖2
‖x‖2

.

Equality was attained in the proof of Theorem 3.5.14 by choosing b and e to
point in special directions. But for these choices Ax = b and Ax̃ = b̃ = b− e
may not be consistent for all singular or rectangular matrices A, so the answer
to the second part is “no.” However, if AA† = I (i.e., if rank (Am×n) = m ),
then the argument in the proof of Theorem 3.5.14 proves equality for all A.

3.5.19. Exercise 2.4.35 on page 196 shows that the minimal norm solution is x = A†b,
so the result follows from the previous exercise—i.e., Exercise 3.5.14.

3.5.20. Exercise 2.4.34 on page 196 shows that x = A†b is one solution of the normal
equations A∗Ax = A∗b, so the result follows from Exercise 3.5.14.

3.5.21. If A = U
(

D 0
0 0

)
V∗ with D = diag (σ1, σ2, . . . , σr) is an SVD for A, then

A∗A = V
(

D2 0
0 0

)
V∗ is an SVD for A∗A —i.e., if σ1 ≥ σ2 ≥ · · · ≥ σr > 0

are the nonzero singular values for A, then σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r > 0 are

the nonzero singular values for A∗A. Therefore, the respective (generalized)
condition numbers for A and A∗A are

κ2 =
σ1
σr

= ‖A‖2
∥∥A†

∥∥
2

and κ22 =
σ2
1

σ2
r

= ‖A‖22
∥∥A†

∥∥2
2
.
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3.5.22. (a) The Frobenius norm is unitarily invariant (by Theorem 1.10.3 on page 92),

so if A = U
(
D 0
0 0

)
V∗ is an SVD, then

‖A‖2F =
∥∥∥U
(
D 0
0 0

)
V∗
∥∥∥
2

F
=
∥∥∥
(
D 0
0 0

)∥∥∥
2

F
= ‖D‖2F =

r∑

i=1

σ2
i .

(b) ‖A‖22 = σ2
1 ≤ σ2

1 + σ2
2 + · · ·+ σ2

r = ‖A‖2F ≤ nσ2
1 = n‖A‖22.

(c) For x ∈ Fn×1, Exercise 1.5.4 on page 37 shows that ‖x‖i ≤ α ‖x‖j , where

α is the (i, j)-entry in the matrix

( 1 2 ∞
1 ∗

√
n n

2 1 ∗
√
n

∞ 1 1 ∗

)
, and the proof of Theorem

1.9.6 on page 86 shows that ‖A‖1 = ‖Aek‖1 for some k, ‖A‖∞ = ‖Ax‖∞ ,
where the entries in x are ±1, and ‖A‖2 = ‖Ax‖2 for some x with ‖x‖2 = 1.
Use these to reach the following conclusions.

(1, 2) : ‖A‖1 = ‖Aek‖1 ≤
√
n ‖Aek‖2 ≤

√
n ‖A‖2 ‖ek‖2 =

√
n ‖A‖2

(1,∞) : ‖A‖1 = ‖Aek‖1 ≤ n ‖Aek‖∞ ≤ n ‖A‖∞ ‖ek‖∞ = n ‖A‖∞
(1, F ) : ‖A‖1 = ‖Aek‖1 ≤

√
n ‖Aek‖2 ≤

√
n ‖A‖F ‖ek‖2 =

√
n ‖A‖F

(2, 1) : ‖A‖2 = ‖Ax‖2 ≤ ‖Ax‖1 ≤ ‖A‖1 ‖x‖1 ≤ ‖A‖1
√
n ‖x‖2 = ‖A‖1

√
n

(2,∞) : ‖A‖2 = ‖Ax‖2 ≤
√
n ‖Ax‖∞ ≤

√
n ‖A‖∞ ‖x‖∞ ≤

√
n ‖A‖∞ ‖x‖2

=
√
n ‖A‖∞

(2, F ) : (see the solution to part b)

(∞, 1) : ‖A‖∞ = ‖Ax‖∞ ≤ ‖Ax‖1 ≤ ‖A‖1 ‖x‖1 = ‖A‖1 n
(∞, 2) : ‖A‖∞ = ‖Ax‖∞ ≤ ‖Ax‖2 ≤ ‖A‖2 ‖x‖2 = ‖A‖2

√
n

(∞, F ) : ‖A‖∞ = ‖Ax‖∞ ≤ ‖Ax‖2 ≤ ‖A‖F ‖x‖2 = ‖A‖F
√
n

(F, 1) : ‖A‖2F =
∑

j

‖A∗j‖22 ≤
∑

j

‖A∗j‖21 ≤ nmax
j
‖A∗j‖21 = n ‖A‖21

(F, 2) : (see the solution to part b)

(F,∞) : ‖A‖F = ‖A∗‖F ≤
√
n ‖A∗‖1 =

√
n ‖A‖∞

3.5.23. You just need to go through the proofs and verify that nothing is lost by replacing
‖∗‖2 by another norm ‖∗‖? for which ‖I‖? = 1.

3.5.24. These results are a corollary of Ky Fan’s theorem (Theorem 3.4.10 on page 344)
because the eigenvalues of A∗A are the squares of the singular values of A, so

‖AX‖2F = trace ((AX)∗(AX)) = trace (X∗A∗AX)

=⇒ max
XTX=Ik

‖AX‖F = max
XTX=Ik

trace (X∗A∗AX) =

k∑

j=1

σ2
j .



Solutions

The min part of the statement follows in a similar manner.

3.5.25. (a) Consider A =

(
ε −1
1 0

)
or A =

(
ε εn

0 ε

)
for small ε 6= 0.

(b) For α > 1, consider

A =




1 −α 0 · · · 0
0 1 −α · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 −α
0 0 · · · 0 1




n×n

and A−1 =




1 α · · · αn−2 αn−1

0 1 · · · αn−3 αn−2
...

...
. . .

...
...

0 0 · · · 1 α
0 0 · · · 0 1



.

Regardless of which norm is used, ‖A‖ > α and
∥∥A−1

∥∥ > αn−1, so κ > αn

exhibits exponential growth. Even for moderate values of n and α > 1, κ can
be quite large.

3.5.26. The argument is almost identical to that given for the nonsingular case except
that now you have

UT
(
A(S2)

)
=
{
w
∣∣w = UTAx =

(
D−1 0
0 0

)
VTx for ‖x‖2 = 1

}
,

so the coordinates of w ∈ UT
(
A(S2)

)
obey the equation

w2
1

σ2
1

+
w2

2

σ2
2

+ · · ·+ w2
r

σ2
r

=
∥∥∥
(

D−1 0
0 0

)
w
∥∥∥
2

2
=
∥∥VTx

∥∥2
2

= ‖x‖22 = 1,

and thus UTA(S2) is an ellipsoid (degenerate if r < n ) whose kth semi-axis is
σkek, which means that A(S2) is an ellipsoid (possibly degenerate) whose kth

semi-axis is Uσkek = σkuk for 1 ≤ k ≤ r.

Solutions for exercises in section 3. 6

3.6.1. A and C are positive definite while B is positive semidefinite. Computing
eigenvalues would show this, but it is easier to use Theorem 2.10.7 on page 270
to check the pivots in the LDLT factorization.

3.6.2. They are the same. Recall Exercise 3.5.5 on page 374.
3.6.3. Each diagonal entry is a 1× 1 principal submatrix, so Theorems 3.6.4 and 3.6.3

apply. Or you could just say 0 ≤ eTi Aei when A is positive semidefinite and
0 < eTi Aei when A is positive definite.

3.6.4. Use Theorem 3.6.1 and the fact that λ ∈ σ (A) if and only if λ−1 ∈ σ
(
A−1

)
.

3.6.5. In either case, A = B∗B by Theorem 3.6.1, so

det (A) = det (B∗B) = det (B∗)det (B) = det (B)det (B) =
∣∣det (B)

∣∣2 ≥ 0.

When A is positive definite, B is nonsingular, and thus det (A) > 0.


